
Neural Expectation Maximization

Klaus Greff∗
IDSIA

klaus@idsia.ch

Sjoerd van Steenkiste∗
IDSIA

sjoerd@idsia.ch

Jürgen Schmidhuber
IDSIA

juergen@idsia.ch

Abstract

Many real world tasks such as reasoning and physical interaction require identifi-
cation and manipulation of conceptual entities. A first step towards solving these
tasks is the automated discovery of distributed symbol-like representations. In
this paper, we explicitly formalize this problem as inference in a spatial mixture
model where each component is parametrized by a neural network. Based on the
Expectation Maximization framework we then derive a differentiable clustering
method that simultaneously learns how to group and represent individual entities.
We evaluate our method on the (sequential) perceptual grouping task and find that
it is able to accurately recover the constituent objects. We demonstrate that the
learned representations are useful for next-step prediction.

1 Introduction

Learning useful representations is an important aspect of unsupervised learning, and one of the
main open problems in machine learning. It has been argued that such representations should be
distributed [13, 37] and disentangled [1, 31, 3]. The latter has recently received an increasing amount
of attention, producing representations that can disentangle features like rotation and lighting [4, 12].

So far, these methods have mostly focused on the single object case whereas, for real world tasks
such as reasoning and physical interaction, it is often necessary to identify and manipulate multiple
entities and their relationships. In current systems this is difficult, since superimposing multiple
distributed and disentangled representations can lead to ambiguities. This is known as the Binding
Problem [21, 37, 13] and has been extensively discussed in neuroscience [33]. One solution to
this problem involves learning a separate representation for each object. In order to allow these
representations to be processed identically they must be described in terms of the same (disentangled)
features. This would then avoid the binding problem, and facilitate a wide range of tasks that require
knowledge about individual objects. This solution requires a process known as perceptual grouping:
dynamically splitting (segmenting) each input into its constituent conceptual entities.

In this work, we tackle this problem of learning how to group and efficiently represent individual
entities, in an unsupervised manner, based solely on the statistical structure of the data. Our work
follows a similar approach as the recently proposed Tagger [7] and aims to further develop the
understanding, as well as build a theoretical framework, for the problem of symbol-like representation
learning. We formalize this problem as inference in a spatial mixture model where each component
is parametrized by a neural network. Based on the Expectation Maximization framework we then
derive a differentiable clustering method, which we call Neural Expectation Maximization (N-EM). It
can be trained in an unsupervised manner to perform perceptual grouping in order to learn an efficient
representation for each group, and naturally extends to sequential data.

∗Both authors contributed equally to this work.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

2 Neural Expectation Maximization

The goal of training a system that produces separate representations for the individual conceptual
entities contained in a given input (here: image) depends on what notion of entity we use. Since we
are interested in the case of unsupervised learning, this notion can only rely on statistical properties
of the data. We therefore adopt the intuitive notion of a conceptual entity as being a common cause
(the object) for multiple observations (the pixels that depict the object). This common cause induces a
dependency-structure among the affected pixels, while the pixels that correspond to different entities
remain (largely) independent. Intuitively this means that knowledge about some pixels of an object
helps in predicting its remainder, whereas it does not improve the predictions for pixels of other
objects. This is especially obvious for sequential data, where pixels belonging to a certain object share
a common fate (e.g. move in the same direction), which makes this setting particularly appealing.

We are interested in representing each entity (object) k with some vector θk that captures all the
structure of the affected pixels, but carries no information about the remainder of the image. This
modularity is a powerful invariant, since it allows the same representation to be reused in different
contexts, which enables generalization to novel combinations of known objects. Further, having all
possible objects represented in the same format makes it easier to work with these representations.
Finally, having a separate θk for each object (as opposed to for the entire image) allows θk to be
distributed and disentangled without suffering from the binding problem.

We treat each image as a composition of K objects, where each pixel is determined by exactly one
object. Which objects are present, as well as the corresponding assignment of pixels, varies from input
to input. Assuming that we have access to the family of distributions P (x|θk) that corresponds to an
object level representation as described above, we can model each image as a mixture model. Then
Expectation Maximization (EM) can be used to simultaneously compute a Maximum Likelihood
Estimate (MLE) for the individual θk-s and the grouping that we are interested in.

The central problem we consider in this work is therefore how to learn such a P (x|θk) in a com-
pletely unsupervised fashion. We accomplish this by parametrizing this family of distributions by
a differentiable function fφ(θ) (a neural network with weights φ). We show that in that case, the
corresponding EM procedure becomes fully differentiable, which allows us to backpropagate an
appropriate outer loss into the weights of the neural network. In the remainder of this section we
formalize and derive this method which we call Neural Expectation Maximization (N-EM).

2.1 Parametrized Spatial Mixture Model

We model each image x ∈ RD as a spatial mixture of K components parametrized by vectors
θ1, . . . ,θK ∈ RM . A differentiable non-linear function fφ (a neural network) is used to transform
these representations θk into parameters ψi,k = fφ(θk)i for separate pixel-wise distributions. These
distributions are typically Bernoulli or Gaussian, in which case ψi,k would be a single probability
or a mean and variance respectively. This parametrization assumes that given the representation,
the pixels are independent but not identically distributed (unlike in standard mixture models). A set
of binary latent variables Z ∈ [0, 1]D×K encodes the unknown true pixel assignments, such that
zi,k = 1 iff pixel i was generated by component k, and

∑
k zi,k = 1. A graphical representation of

this model can be seen in Figure 1, where π = (π1, . . . πK) are the mixing coefficients (or prior for
z). The full likelihood for x given θ = (θ1, . . . ,θK) is given by:

P (x|θ) =
D∏
i=1

∑
zi

P (xi, zi|ψi) =
D∏
i=1

K∑
k=1

P (zi,k = 1)︸ ︷︷ ︸
πk

P (xi|ψi,k, zi,k = 1). (1)

2.2 Expectation Maximization

Directly optimizing logP (x|ψ) with respect to θ is difficult due to marginalization over z, while for
many distributions optimizing logP (x, z|ψ) is much easier. Expectation Maximization (EM; [6])
takes advantage of this and instead optimizes a lower bound given by the expected log likelihood:

Q(θ,θold) =
∑
z

P (z|x,ψold) logP (x, z|ψ). (2)

2

D

Figure 1: left: The probabilistic graphical model that underlies N-EM. right: Illustration of the
computations for two steps of N-EM.

Iterative optimization of this bound alternates between two steps: in the E-step we compute a new
estimate of the posterior probability distribution over the latent variables given θold from the previous
iteration, yielding a new soft-assignment of the pixels to the components (clusters):

γi,k := P (zi,k = 1|xi, ψold
i). (3)

In the M-step we then aim to find the configuration of θ that would maximize the expected log-
likelihood using the posteriors computed in the E-step. Due to the non-linearity of fφ there exists
no analytical solution to argmaxθQ(θ,θold). However, since fφ is differentiable, we can improve
Q(θ,θold) by taking a gradient ascent step:2

θnew = θold + η
∂Q
∂θ

where
∂Q
∂θk

∝
D∑
i=1

γi,k(ψi,k − xi)
∂ψi,k
∂θk

. (4)

The resulting algorithm belongs to the class of generalized EM algorithms and is guaranteed (for a
sufficiently small learning rate η) to converge to a (local) optimum of the data log likelihood [42].

2.3 Unrolling

In our model the information about statistical regularities required for clustering the pixels into
objects is encoded in the neural network fφ with weights φ. So far we have considered fφ to be
fixed and have shown how we can compute an MLE for θ alongside the appropriate clustering.
We now observe that by unrolling the iterations of the presented generalized EM, we obtain an
end-to-end differentiable clustering procedure based on the statistical model implemented by fφ. We
can therefore use (stochastic) gradient descent and fit the statistical model to capture the regularities
corresponding to objects for a given dataset. This is implemented by back-propagating an appropriate
loss (see Section 2.4) through “time” (BPTT; [39, 41]) into the weights φ. We refer to this trainable
procedure as Neural Expectation Maximization (N-EM), an overview of which can be seen in Figure 1.

Figure 2: RNN-EM Illustration. Note the
changed encoder and recurrence compared
to Figure 1.

Upon inspection of the structure of N-EM we find that
it resembles K copies of a recurrent neural network
with hidden states θk that, at each timestep, receive
γk � (ψk − x) as their input. Each copy generates a
new ψk, which is then used by the E-step to re-estimate
the soft-assignments γ. In order to accurately mimic
the M-Step (4) with an RNN, we must impose several
restrictions on its weights and structure: the “encoder”
must correspond to the Jacobian ∂ψk/∂θk, and the
recurrent update must linearly combine the output of
the encoder with θk from the previous timestep. In-
stead, we introduce a new algorithm named RNN-EM,
when substituting that part of the computational graph
of N-EM with an actual RNN (without imposing any re-
strictions). Although RNN-EM can no longer guarantee

2Here we assume that P (xi|zi,k = 1, ψi,k) is given by N (xi;µ = ψi,k, σ
2) for some fixed σ2, yet a similar

update arises for many typical parametrizations of pixel distributions.

3

convergence of the data log likelihood, its recurrent weights increase the flexibility of the clustering
procedure. Moreover, by using a fully parametrized recurrent weight matrix RNN-EM naturally
extends to sequential data. Figure 2 presents the computational graph of a single RNN-EM timestep.

2.4 Training Objective

N-EM is a differentiable clustering procedure, whose outcome relies on the statistical model fφ. We
are interested in a particular unsupervised clustering that corresponds to grouping entities based on
the statistical regularities in the data. To train our system, we therefore require a loss function that
teaches fφ to map from representations θ to parameters ψ that correspond to pixelwise distributions
for such objects. We accomplish this with a two-term loss function that guides each of theK networks
to model the structure of a single object independently of any other information in the image:

L(x) = −
D∑
i=1

K∑
k=1

γi,k logP (xi, zi,k|ψi,k)︸ ︷︷ ︸
intra-cluster loss

− (1− γi,k)DKL[P (xi)||P (xi|ψi,k, zi,k)]︸ ︷︷ ︸
inter-cluster loss

. (5)

The intra-cluster loss corresponds to the same expected data log-likelihood Q as is optimized by
N-EM. It is analogous to a standard reconstruction loss used for training autoencoders, weighted
by the cluster assignment. Similar to autoencoders, this objective is prone to trivial solutions in
case of overcapacity, which prevent the network from modelling the statistical regularities that we
are interested in. Standard techniques can be used to overcome this problem, such as making θ a
bottleneck or using a noisy version of x to compute the inputs to the network. Furthermore, when
RNN-EM is used on sequential data we can use a next-step prediction loss.

Weighing the loss pixelwise is crucial, since it allows each network to specialize its predictions to an
individual object. However, it also introduces a problem: the loss for out-of-cluster pixels (γi,k = 0)
vanishes. This leaves the network free to predict anything and does not yield specialized representa-
tions. Therefore, we add a second term (inter-cluster loss) which penalizes the KL divergence between
out-of-cluster predictions and the pixelwise prior of the data. Intuitively this tells each representation
θk to contain no information regarding non-assigned pixels xi: P (xi|ψi,k, zi,k) = P (xi).

A disadvantage of the interaction between γ and ψ in (5) is that it may yield conflicting gradients.
For any θk the loss for a given pixel i can be reduced by better predicting xi, or by decreasing γi,k
(i.e. taking less responsibility) which is (due to the E-step) realized by being worse at predicting xi. A
practical solution to this problem is obtained by stopping the γ gradients, i.e. by setting ∂L/∂γ = 0
during backpropagation.

3 Related work

The method most closely related to our approach is Tagger [7], which similarly learns perceptual
grouping in an unsupervised fashion using K copies of a neural network that work together by
reconstructing different parts of the input. Unlike in case of N-EM, these copies additionally learn to
output the grouping, which gives Tagger more direct control over the segmentation and supports its
use on complex texture segmentation tasks. Our work maintains a close connection to EM and relies
on the posterior inference of the E-Step as a grouping mechanism. This facilitates theoretical analysis
and simplifies the task for the resulting networks, which we find can be markedly smaller than in
Tagger. Furthermore, Tagger does not include any recurrent connections on the level of the hidden
states, precluding it from next step prediction on sequential tasks.3

The Binding problem was first considered in the context of Neuroscience [21, 37] and has sparked
some early work in oscillatory neural networks that use synchronization as a grouping mechanism [36,
38, 24]. Later, complex valued activations have been used to replace the explicit simulation of
oscillation [25, 26]. By virtue of being general computers, any RNN can in principle learn a suitable
mechanism. In practice however it seems hard to learn, and adding a suitable mechanism like
competition [40], fast weights [29], or perceptual grouping as in N-EM seems necessary.

3RTagger [15]: a recurrent extension of Tagger that does support sequential data was developed concurrent
to this work.

4

in
pu

ts
N

-E
M

a

R
N

N
-E

M

b c d e f

Figure 3: Groupings by RNN-EM (bottom row), N-
EM (middle row) for six input images (top row).
Both methods recover the individual shapes accu-
rately when they are separated (a, b, f), even when
confronted with the same shape (b). RNN-EM is able
to handle most occlusion (c, d) but sometimes fails
(e). The exact assignments are permutation invariant
and depend on γ initialization; compare (a) and (f).

Unsupervised Segmentation has been studied in several different contexts [30], from random vec-
tors [14] over texture segmentation [10] to images [18, 16]. Early work in unsupervised video
segmentation [17] used generalized Expectation Maximization (EM) to infer how to split frames
of moving sprites. More recently optical flow has been used to train convolutional networks to do
figure/ground segmentation [23, 34]. A related line of work under the term of multi-causal mod-
elling [28] has formalized perceptual grouping as inference in a generative compositional model of
images. Masked RBMs [20] for example extend Restricted Boltzmann Machines with a latent mask
inferred through Block-Gibbs sampling.

Gradient backpropagation through inference updates has previously been addressed in the context of
sparse coding with (Fast) Iterative Shrinkage/Tresholding Algorithms ((F)ISTA; [5, 27, 2]). Here the
unrolled graph of a fixed number of ISTA iterations is replaced by a recurrent neural network that
parametrizes the gradient computations and is trained to predict the sparse codes directly [9]. We
derive RNN-EM from N-EM in a similar fashion and likewise obtain a trainable procedure that has
the structure of iterative pursuit built into the architecture, while leaving tunable degrees of freedom
that can improve their modeling capabilities [32]. An alternative to further empower the network by
untying its weights across iterations [11] was not considered for flexibility reasons.

4 Experiments

We evaluate our approach on a perceptual grouping task for generated static images and video. By
composing images out of simple shapes we have control over the statistical structure of the data, as
well as access to the ground-truth clustering. This allows us to verify that the proposed method indeed
recovers the intended grouping and learns representations corresponding to these objects. In particular
we are interested in studying the role of next-step prediction as a unsupervised objective for perceptual
grouping, the effect of the hyperparameter K, and the usefulness of the learned representations.

In all experiments we train the networks using ADAM [19] with default parameters, a batch size
of 64 and 50 000 train + 10 000 validation + 10 000 test inputs. Consistent with earlier work [8, 7],
we evaluate the quality of the learned groupings with respect to the ground truth while ignoring the
background and overlap regions. This comparison is done using the Adjusted Mutual Information
(AMI; [35]) score, which provides a measure of clustering similarity between 0 (random) and 1
(perfect match). We use early stopping when the validation loss has not improved for 10 epochs.4 A
detailed overview of the experimental setup can be found in Appendix A. All reported results are
averages computed over five runs.5

4.1 Static Shapes

To validate that our approach yields the intended behavior we consider a simple perceptual grouping
task that involves grouping three randomly chosen regular shapes (45�) located in random positions
of 28 × 28 binary images [26]. This simple setup serves as a test-bed for comparing N-EM and
RNN-EM, before moving on to more complex scenarios.

We implement fφ by means of a single layer fully connected neural network with a sigmoid output
ψi,k for each pixel that corresponds to the mean of a Bernoulli distribution. The representation θk is

4Note that we do not stop on the AMI score as this is not part of our objective function and only measured to
evaluate the performance after training.

5Code to reproduce all experiments is available at https://github.com/sjoerdvansteenkiste/
Neural-EM

5

https://github.com/sjoerdvansteenkiste/Neural-EM
https://github.com/sjoerdvansteenkiste/Neural-EM

ga
m

m
as

m
u_

0
m

u_
1

m
u_

2
m

u_
3

m
u_

4

Step 1

in
pu

ts

Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9 Step 10 Step 11 Step 12 Step 13 Step 14 Step 15 Step 16 Step 17 Step 18 Step 19 Step 20

Figure 4: A sequence of 5 shapes flying along random trajectories (bottom row). The next-step
prediction of each copy of the network (rows 2 to 5) and the soft-assignment of the pixels to each of
the copies (top row). Observe that the network learns to separate the individual shapes as a means to
efficiently solve next-step prediction. Even when many of the shapes are overlapping, as can be seen
in time-steps 18-20, the network is still able to disentangle the individual shapes from the clutter.

a real-valued 250-dimensional vector squashed to the (0, 1) range by a sigmoid function before being
fed into the network. Similarly for RNN-EM we use a recurrent neural network with 250 sigmoidal
hidden units and an equivalent output layer. Both networks are trained with K = 3 and unrolled for
15 EM steps.

As shown in Figure 3, we observe that both approaches are able to recover the individual shapes as long
as they are separated, even when confronted with identical shapes. N-EM performs worse if the image
contains occlusion, and we find that RNN-EM is in general more stable and produces considerably
better groupings. This observation is in line with findings for Sparse Coding [9]. Similarly we
conclude that the tunable degrees of freedom in RNN-EM help speed-up the optimization process
resulting in a more powerful approach that requires fewer iterations. The benefit is reflected in
the large score difference between the two: 0.826 ± 0.005 AMI compared to 0.475 ± 0.043 AMI
for N-EM. In comparison, Tagger achieves an AMI score of 0.79± 0.034 (and 0.97± 0.009 with
layernorm), while using about twenty times more parameters [7].

4.2 Flying Shapes

We consider a sequential extension of the static shapes dataset in which the shapes (45�) are floating
along random trajectories and bounce off walls. An example sequence with 5 shapes can be seen in
the bottom row of Figure 4. We use a convolutional encoder and decoder inspired by the discriminator
and generator networks of infoGAN [4], with a recurrent neural network of 100 sigmoidal units (for
details see Section A.2). At each timestep t the network receives γk(ψ

(t−1)
k − x̃(t)) as input, where

x̃(t) is the current frame corrupted with additional bitflip noise (p = 0.2). The next-step prediction
objective is implemented by replacing x with x(t+1) in (5), and is evaluated at each time-step.

Table 1 summarizes the results on flying shapes, and an example of a sequence with 5 shapes when
using K = 5 can be seen in Figure 4. For 3 shapes we observe that the produced groupings are close
to perfect (AMI: 0.970± 0.005). Even in the very cluttered case of 5 shapes the network is able to
separate the individual objects in almost all cases (AMI: 0.878± 0.003).

These results demonstrate the adequacy of the next step prediction task for perceptual grouping.
However, we find that the converse also holds: the corresponding representations are useful for the
prediction task. In Figure 5 we compare the next-step prediction error of RNN-EM with K = 1
(which reduces to a recurrent autoencoder that receives the difference between its previous prediction
and the current frame as input) to RNN-EM with K = 5 on this task. To evaluate RNN-EM
on next-step prediction we computed its loss using P (xi|ψi) = P (xi|maxk ψi,k) as opposed to
P (xi|ψi) =

∑
k γi,kP (xi|ψi,k) to avoid including information from the next timestep. The reported

BCE loss for RNN-EM is therefore an upperbound to the true BCE loss. From the figure we observe
that RNN-EM produces significantly lower errors, especially when the number of objects increases.

6

3 4 5
objects

0

20

40

60

80

100

BC
E

method
RNN-EM
Recurrent AE

Figure 5: Binomial Cross Entropy Error
obtained by RNN-EM and a recurrent au-
toencoder (RNN-EM with K = 1) on the
denoising and next-step prediction task.
RNN-EM produces significantly lower
BCE across different numbers of objects.

0 10 20 30 40 50
Steps

0.0

0.2

0.4

0.6

0.8

1.0

AM
I

trained until

Figure 6: Average AMI score (blue line) measured for
RNN-EM (trained for 20 steps) across the flying MNIST
test-set and corresponding quartiles (shaded areas), com-
puted for each of 50 time-steps. The learned grouping
dynamics generalize to longer sequences and even fur-
ther improve the AMI score.

Train Test Test Generalization

obj. K AMI # obj. K AMI # obj. K AMI

3 3 0.969 ± 0.006 3 3 0.970 ± 0.005 3 5 0.972 ± 0.007
3 5 0.997 ± 0.001 3 5 0.997 ± 0.002 3 3 0.914 ± 0.015
5 3 0.614 ± 0.003 5 3 0.614 ± 0.003 3 3 0.886 ± 0.010
5 5 0.878 ± 0.003 5 5 0.878 ± 0.003 3 5 0.981 ± 0.003

Table 1: AMI scores obtained by RNN-EM on flying shapes when varying the number of objects and
number of components K, during training and at test time.

Finally, in Table 1 we also provide insight about the impact of choosing the hyper-parameter K,
which is unknown for many real-world scenarios. Surprisingly we observe that training with too large
K is in fact favourable, and that the network learns to leave the excess groups empty. When training
with too few components we find that the network still learns about the individual shapes and we
observe only a slight drop in score when correctly setting the number of components at test time. We
conclude that RNN-EM is robust towards different choices of K, and specifically that choosing K to
be too high is not detrimental.

4.3 Flying MNIST

In order to incorporate greater variability among the objects we consider a sequential extension of
MNIST. Here each sequence consists of gray-scale 24× 24 images containing two down-sampled
MNIST digits that start in random positions and float along randomly sampled trajectories within the
image for T timesteps. An example sequence can be seen in the bottom row of Figure 7.

We deploy a slightly deeper version of the architecture used in flying shapes. Its details can be found
in Appendix A.3. Since the images are gray-scale we now use a Gaussian distribution for each pixel
with fixed σ2 = 0.25 and µ = ψi,k as computed by each copy of the network. The training procedure
is identical to flying shapes except that we replace bitflip noise with masked uniform noise: we first
sample a binary mask from a multi-variate Bernoulli distribution with p = 0.2 and then use this
mask to interpolate between the original image and samples from a Uniform distribution between the
minimum and maximum values of the data (0,1).

We train with K = 2 and T = 20 on flying MNIST having two digits and obtain an AMI score of
0.819± 0.022 on the test set, measured across 5 runs.

In early experiments we observed that, given the large variability among the 50 000 unique digits, we
can boost the model performance by training in stages using 20, 500, 50 000 digits. Here we exploit
the generalization capabilities of RNN-EM to quickly transfer knowledge from a less varying set of

7

ga
m

m
as

m
u_

0
m

u_
1

m
u_

2

Step 1

in
pu

ts

Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9 Step 10 Step 11 Step 12 Step 13 Step 14 Step 15 Step 16 Step 17 Step 18 Step 19 Step 20

Figure 7: A sequence of 3 MNIST digits flying across random trajectories in the image (bottom row).
The next-step prediction of each copy of the network (rows 2 to 4) and the soft-assignment of the
pixels to each of the copies (top row). Although the network was trained (stage-wise) on sequences
with two digits, it is accurately able to separate three digits.

MNIST digits to unseen variations. We used the same hyper-parameter configuration as before and
obtain an AMI score of 0.917± 0.005 on the test set, measured across 5 runs.

We study the generalization capabilities and robustness of these trained RNN-EM networks by means
of three experiments. In the first experiment we evaluate them on flying MNIST having three digits
(one extra) and likewise set K = 3. Even without further training we are able to maintain a high
AMI score of 0.729± 0.019 (stage-wise: 0.838± 0.008) on the test-set. A test example can be seen
in Figure 7. In the second experiment we are interested in whether the grouping mechanism that has
been learned can be transferred to static images. We find that using 50 RNN-EM steps we are able to
transfer a large part of the learned grouping dynamics and obtain an AMI score of 0.619 ± 0.023
(stage-wise: 0.772 ± 0.008) for two static digits. As a final experiment we evaluate the directly
trained network on the same dataset for a larger number of timesteps. Figure 6 displays the average
AMI score across the test set as well as the range of the upper and lower quartile for each timestep.

The results of these experiments confirm our earlier observations for flying shapes, in that the learned
grouping dynamics are robust and generalize across a wide range of variations. Moreover we find
that the AMI score further improves at test time when increasing the sequence length.

5 Discussion

The experimental results indicate that the proposed Neural Expectation Maximization framework can
indeed learn how to group pixels according to constituent objects. In doing so the network learns a
useful and localized representation for individual entities, which encodes only the information relevant
to it. Each entity is represented separately in the same space, which avoids the binding problem and
makes the representations usable as efficient symbols for arbitrary entities in the dataset. We believe
that this is useful for reasoning in particular, and a potentially wide range of other tasks that depend
on interaction between multiple entities. Empirically we find that the learned representations are
already beneficial in next-step prediction with multiple objects, a task in which overlapping objects
are problematic for standard approaches, but can be handled efficiently when learning a separate
representation for each object.

As is typical in clustering methods, in N-EM there is no preferred assignment of objects to groups and
so the grouping numbering is arbitrary and only depends on initialization. This property renders our
results permutation invariant and naturally allows for instance segmentation, as opposed to semantic
segmentation where groups correspond to pre-defined categories. RNN-EM learns to segment in an
unsupervised fashion, which makes it applicable to settings with little or no labeled data. On the
downside this lack of supervision means that the resulting segmentation may not always match the
intended outcome. This problem is inherent to this task since in real world images the notion of
an object is ill-defined and task dependent. We envision future work to alleviate this by extending
unsupervised segmentation to hierarchical groupings, and by dynamically conditioning them on the
task at hand using top-down feedback and attention.

8

6 Conclusion

We have argued for the importance of separately representing conceptual entities contained in the input,
and suggested clustering based on statistical regularities as an appropriate unsupervised approach
for separating them. We formalized this notion and derived a novel framework that combines neural
networks and generalized EM into a trainable clustering algorithm. We have shown how this method
can be trained in a fully unsupervised fashion to segment its inputs into entities, and to represent
them individually. Using synthetic images and video, we have empirically verified that our method
can recover the objects underlying the data, and represent them in a useful way. We believe that
this work will help to develop a theoretical foundation for understanding this important problem of
unsupervised learning, as well as providing a first step towards building practical solutions that make
use of these symbol-like representations.

Acknowledgements

The authors wish to thank Paulo Rauber and the anonymous reviewers for their constructive feedback.
This research was supported by the Swiss National Science Foundation grant 200021_165675/1
and the EU project “INPUT” (H2020-ICT-2015 grant no. 687795). We are grateful to NVIDIA
Corporation for donating us a DGX-1 as part of the Pioneers of AI Research award, and to IBM for
donating a “Minsky” machine.

References
[1] H.B. Barlow, T.P. Kaushal, and G.J. Mitchison. Finding Minimum Entropy Codes. Neural

Computation, 1(3):412–423, September 1989.
[2] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm with appli-

cation to wavelet-based image deblurring. In Acoustics, Speech and Signal Processing, 2009.
ICASSP 2009. IEEE International Conference On, pages 693–696. IEEE, 2009.

[3] Yoshua Bengio. Deep learning of representations: Looking forward. In International Conference
on Statistical Language and Speech Processing, pages 1–37. Springer, 2013.

[4] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel.
InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Ad-
versarial Nets. arXiv:1606.03657 [cs, stat], June 2016.

[5] Ingrid Daubechies, Michel Defrise, and Christine De Mol. An iterative thresholding algorithm
for linear inverse problems with a sparsity constraint. Communications on pure and applied
mathematics, 57(11):1413–1457, 2004.

[6] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via
the EM algorithm. Journal of the royal statistical society., pages 1–38, 1977.

[7] Klaus Greff, Antti Rasmus, Mathias Berglund, Tele Hotloo Hao, Jürgen Schmidhuber, and Harri
Valpola. Tagger: Deep Unsupervised Perceptual Grouping. arXiv:1606.06724 [cs], June 2016.

[8] Klaus Greff, Rupesh Kumar Srivastava, and Jürgen Schmidhuber. Binding via Reconstruction
Clustering. arXiv:1511.06418 [cs], November 2015.

[9] Karol Gregor and Yann LeCun. Learning fast approximations of sparse coding. In Proceedings
of the 27th International Conference on Machine Learning (ICML-10), pages 399–406, 2010.

[10] Jose A. Guerrero-Colón, Eero P. Simoncelli, and Javier Portilla. Image denoising using mixtures
of Gaussian scale mixtures. In Image Processing, 2008. ICIP 2008. 15th IEEE International
Conference On, pages 565–568. IEEE, 2008.

[11] John R. Hershey, Jonathan Le Roux, and Felix Weninger. Deep unfolding: Model-based
inspiration of novel deep architectures. arXiv preprint arXiv:1409.2574, 2014.

[12] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. Beta-VAE: Learning basic visual concepts with
a constrained variational framework. In In Proceedings of the International Conference on
Learning Representations (ICLR), 2017.

[13] Geoffrey E. Hinton. Distributed representations. 1984.

9

[14] Aapo Hyvärinen and Jukka Perkiö. Learning to Segment Any Random Vector. In The 2006
IEEE International Joint Conference on Neural Network Proceedings, pages 4167–4172. IEEE,
2006.

[15] Alexander Ilin, Isabeau Prémont-Schwarz, Tele Hotloo Hao, Antti Rasmus, Rinu Boney, and
Harri Valpola. Recurrent Ladder Networks. arXiv:1707.09219 [cs, stat], July 2017.

[16] Phillip Isola, Daniel Zoran, Dilip Krishnan, and Edward H. Adelson. Learning visual groups
from co-occurrences in space and time. arXiv:1511.06811 [cs], November 2015.

[17] Nebojsa Jojic and Brendan J. Frey. Learning flexible sprites in video layers. In Computer Vision
and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society
Conference On, volume 1, pages I–I. IEEE, 2001.

[18] Anitha Kannan, John Winn, and Carsten Rother. Clustering appearance and shape by learning
jigsaws. In Advances in Neural Information Processing Systems, pages 657–664, 2007.

[19] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[20] Nicolas Le Roux, Nicolas Heess, Jamie Shotton, and John Winn. Learning a generative model
of images by factoring appearance and shape. Neural Computation, 23(3):593–650, 2011.

[21] P. M. Milner. A model for visual shape recognition. Psychological review, 81(6):521, 1974.

[22] Augustus Odena, Vincent Dumoulin, and Chris Olah. Deconvolution and Checkerboard Artifacts.
Distill, 2016.

[23] Deepak Pathak, Ross Girshick, Piotr Dollár, Trevor Darrell, and Bharath Hariharan. Learning
Features by Watching Objects Move. arXiv:1612.06370 [cs, stat], December 2016.

[24] R. A. Rao, G. Cecchi, C. C. Peck, and J. R. Kozloski. Unsupervised segmentation with
dynamical units. Neural Networks, IEEE Transactions on, 19(1):168–182, 2008.

[25] R. A. Rao and G. A. Cecchi. An objective function utilizing complex sparsity for efficient
segmentation in multi-layer oscillatory networks. International Journal of Intelligent Computing
and Cybernetics, 3(2):173–206, 2010.

[26] David P. Reichert and Thomas Serre. Neuronal Synchrony in Complex-Valued Deep Networks.
arXiv:1312.6115 [cs, q-bio, stat], December 2013.

[27] Christopher J. Rozell, Don H. Johnson, Richard G. Baraniuk, and Bruno A. Olshausen.
Sparse coding via thresholding and local competition in neural circuits. Neural computa-
tion, 20(10):2526–2563, 2008.

[28] E. Saund. A multiple cause mixture model for unsupervised learning. Neural Computation,
7(1):51–71, 1995.

[29] J. Schmidhuber. Learning to control fast-weight memories: An alternative to dynamic recurrent
networks. Neural Computation, 4(1):131–139, 1992.

[30] Jürgen Schmidhuber. Learning Complex, Extended Sequences Using the Principle of History
Compression. Neural Computation, 4(2):234–242, March 1992.

[31] Jürgen Schmidhuber. Learning Factorial Codes by Predictability Minimization. Neural Compu-
tation, 4(6):863–879, November 1992.

[32] Pablo Sprechmann, Alexander M. Bronstein, and Guillermo Sapiro. Learning efficient sparse
and low rank models. IEEE transactions on pattern analysis and machine intelligence,
37(9):1821–1833, 2015.

[33] Anne Treisman. The binding problem. Current Opinion in Neurobiology, 6(2):171–178, April
1996.

[34] Sudheendra Vijayanarasimhan, Susanna Ricco, Cordelia Schmid, Rahul Sukthankar, and Kate-
rina Fragkiadaki. SfM-Net: Learning of Structure and Motion from Video. arXiv:1704.07804
[cs], April 2017.

[35] N. X. Vinh, J. Epps, and J. Bailey. Information theoretic measures for clusterings comparison:
Variants, properties, normalization and correction for chance. JMLR, 11:2837–2854, 2010.

[36] C. von der Malsburg. Binding in models of perception and brain function. Current opinion in
neurobiology, 5(4):520–526, 1995.

10

[37] Christoph von der Malsburg. The Correlation Theory of Brain Function. Departmental technical
report, MPI, 1981.

[38] D. Wang and D. Terman. Locally excitatory globally inhibitory oscillator networks. Neural
Networks, IEEE Transactions on, 6(1):283–286, 1995.

[39] Paul J. Werbos. Generalization of backpropagation with application to a recurrent gas market
model. Neural networks, 1(4):339–356, 1988.

[40] H. Wersing, J. J. Steil, and H. Ritter. A competitive-layer model for feature binding and sensory
segmentation. Neural Computation, 13(2):357–387, 2001.

[41] Ronald J. Williams. Complexity of exact gradient computation algorithms for recurrent neu-
ral networks. Technical report, Technical Report Technical Report NU-CCS-89-27, Boston:
Northeastern University, College of Computer Science, 1989.

[42] CF Jeff Wu. On the convergence properties of the EM algorithm. The Annals of statistics, pages
95–103, 1983.

11

A Experiment Details

The following subsections provide detailed information about the experimental setup of our empirical
evaluation.

In all experiments we train the networks using ADAM [19] with default parameters, a batch size of
64 and 50 000 train + 10 000 validation + 10 000 test inputs. The quality of the learned groupings is
evaluated by computing the Adjusted Mutual Information (AMI; [35]) with respect to the ground
truth, while ignoring the background and overlap regions (as is consistent with earlier work [8, 7]).
We use early stopping when the validation loss has not improved for 10 epochs.

A.1 Experiments on Static Shapes

Each input consists of a 28 × 28 binary image containing three regular shapes (45�) located in
random positions [26].

For N-EM we implement fφ by means of a single layer fully connected neural network with a sigmoid
activation function. It receives a real-valued 250-dimensional vector θ as input and outputs for each
pixel a value that parameterizes a Bernoulli distribution. We squash θ with a Sigmoid before passing
it to the network and train an additional weight to implement the learning rate that is used to combine
the gradient ascent updates into the current parameter estimate.

Similarly for RNN-EM we use a recurrent neural network with 250 Sigmoidal hidden units and
an fully-connected output-layer with a sigmoid activation function that parametrizes a Bernoulli
distribution for each pixel in the same fashion.

We train both networks with K = 4 for 15 EM steps and add bitflip noise with probability 0.1 to each
of the pixels. The prior for each pixel in the data is set to a Bernoulli distribution with p = 0. The
outer-loss is only injected at the final EM-step.

A.2 Experiments on Flying Shapes

Each input consists of a sequence of binary 28 × 28 images containing a fixed number of shapes
(45�) that start in random positions and float along randomly sampled trajectories within the image
for 20 steps.

We use a convolutional encoder-decoder architecture inspired by recent GANs [4] with a recurrent
neural network as bottleneck:

1. 4× 4 conv. 32 ELU. stride 2. layer norm

2. 4× 4 conv. 64 ELU. stride 2. layer norm

3. fully connected. 512 ELU. layer norm

4. recurrent. 100 Sigmoid. layer norm on the output

5. fully connected. 512 RELU. layer norm

6. fully connected. 7× 7× 64 RELU. layer norm

7. 4× 4 reshape 2 nearest-neighbour, conv. 32 RELU. layer norm

8. 4× 4 reshape 2 nearest-neighbour, conv. 1 Sigmoid

Instead of using transposed convolutions (to implement the "de-convolution") we first reshape the
image using the default nearest-neighbour interpolation followed by a normal convolution in order to
avoid frequency artifacts [22]. Note that we do not add layer norm on the recurrent connection.

At each timestep t we feed γk(ψ
(t−1)
k − x̃(t)) as input to the network, where x̃ is the input with

added bitflip noise (p = 0.2). RNN-EM is trained with a next-step prediction objective implemented
by replacing x with x(t+1) in (5), which we evaluate at each time-step. A single RNN-EM step is
used for each timestep. The prior for each pixel in the data is set to a Bernoulli distribution with
p = 0. We prevent conflicting gradient updates by not back-propagating any gradients through γ.

12

A.3 Experiments on Flying MNIST

Each input consists of a sequence of gray-scale 24× 24 images containing a fixed number of down-
sampled (by a factor of two along each dimension) MNIST digits that start in random positions and
“fly” across randomly sampled trajectories within the image for T timesteps.

We use a slightly deeper version of the architecture used for flying shapes:

1. 4× 4 conv. 32 ELU. stride 2. layer norm
2. 4× 4 conv. 64 ELU. stride 2. layer norm
3. 4× 4 conv. 128 ELU. stride 2. layer norm
4. fully connected. 512 ELU. layer norm
5. recurrent. 250 Sigmoid. layer norm on the output
6. fully connected. 512 RELU. layer norm
7. fully connected. 3× 3× 128 RELU. layer norm
8. 4× 4 reshape 2 nearest-neighbour, conv. 64 RELU. layer norm
9. 4× 4 reshape 2 nearest-neighbour, conv. 32 RELU. layer norm

10. 4× 4 reshape 2 nearest-neighbour, conv. 1 linear

The training procedure is largely identical to the one described for flying shapes except that we replace
the bitflip noise with masked uniform noise: we first sample a binary mask from a multi-variate
Bernoulli distribution with p = 0.2 and then use this mask to interpolate between the original image
and samples from a Uniform distribution between the minimum (0.0) and maximum (1.0) values
of the data. We use a learning rate of 0.0005 (from the second stage onwards in case of stage-wise
training), scale the second-loss term by a factor of 0.2 and find it beneficial to normalize the masked
differences between the prediction and the image (zero mean, standard deviation one) before passing
it to the network.

13

	Introduction
	Neural Expectation Maximization
	Parametrized Spatial Mixture Model
	Expectation Maximization
	Unrolling
	Training Objective

	Related work
	Experiments
	Static Shapes
	Flying Shapes
	Flying MNIST

	Discussion
	Conclusion
	Experiment Details
	Experiments on Static Shapes
	Experiments on Flying Shapes
	Experiments on Flying MNIST

