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ABSTRACT

A new indirect scheme for encoding neural network connec-
tion weights as sets of wavelet-domain coefficients is pro-
posed in this paper. It exploits spatial regularities in the
weight-space to reduce the gene-space dimension by con-
sidering the low-frequency wavelet coefficients only. The
wavelet-based encoding builds on top of a frequency-domain
encoding, but unlike when using a Fourier-type transform, it

offers gene locality while preserving continuity of the genotype-

phenotype mapping. We argue that this added property al-
lows for more efficient evolutionary search and demonstrate
this on the octopus-arm control task, where superior solu-
tions were found in fewer generations. The scalability of
the wavelet-based encoding is shown by evolving networks
with many parameters to control game-playing agents in the
Arcade Learning Environment.

CCS Concepts

eComputing methodologies — Artificial intelligence;
Generative and developmental approaches; Reinforce-
ment learning;
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1. INTRODUCTION

Neuroevolution [19] provides an elegant alternative for
training artificial neural networks (NNs) used in reinforce-
ment learning (RL) tasks. Unlike in value-based methods,
e.g. |26} [20], NNs can collapse the sensory processing and
control into a single system that naturally deals with con-
tinuous state/action spaces. Hence, a search for optimal
RL policies can be carried out using evolutionary search for
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NN parameters without accessing the (often hard to obtain)
reward gradient |2§].

NNs are encoded either directly or indirectly as strings
of values (genes) and then evolved by an evolutionary algo-
rithm. Direct encoding schemes employ a one-to-one map-
ping from genes to NN parameters (e.g. connectivity pat-
terns, connection weights) so that the size of the chromo-
some is proportional to the NN complexity.

In indirect (or generative) encoding schemes [15] [13] the
mapping from genes (genotype) to NN parameters (pheno-
type) is defined by an arbitrary computable function, as in
early work in |22} 23], often chosen such that it (weakly)
decouples the network complexity from the size of the chro-
mosome. Indirect encoding schemes allow neuroevolution to
be scaled to larger problems, as an optimal solution in a
high-dimensional parameter space can be searched for in a
lower-dimensional gene space [5]. Indirect encoding schemes
have been successfully applied to a wide range of tasks in-
cluding helicopter control [7], vision-based TORCS [16], and
Atari game-playing |11].

Although proven successful in different domains, most in-
direct encoding schemes lack continuity in the genotype-
phenotype mapping and as a result a small change in the
genotype may cause a large change to the phenotype [17].
An encoding scheme that does not suffer from this problem
encodes the network parameters as ordered sets of band-
limited Discrete Cosine Transform coefficients (DCT-based
Encoding; [17]). By using a Fourier-type mapping the DCT-
based encoding is able to render the size of the chromosome
completely independent of the network complexity. How-
ever, as an immediate result spatio-temporal locality is lost.
The evolved coefficients no longer carry positional informa-
tion about the network parameters and hence a local change
to the genotype affects the phenotype in its entirely. Pre-
viously it has been argued that “because indirect encodings
do not map directly to their phenotypes, they can bias the
search in unpredictable ways.” (24, |2|. Here we argue that
the lack of gene locality reduces the effectiveness of tradi-
tional evolutionary operations (e.g. recombination, muta-
tion) and therefore diminishes the efficiency of search via
evolutionary computation.

In this paper, we propose a novel wavelet-based encod-
ing (WBE) scheme which satisfies both spatio-temporal lo-
cality and continuity in the genotype-phenotype mapping.
Similar to previous work [17] our encoding exploits spatial
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regularity among the network weights to reduce the search
space dimensionality. However, in the WBE scheme a set of
localized wavelet coefficients is evolved to encode the low-
frequency content in the network weights. Inspired by con-
ventional wavelet-based image compression [4], a lossy re-
construction of the NN weights is obtained by applying the
inverse wavelet transform to these low-frequency wavelet co-
efficients only.

The advantages of our method are twofold: First, any spa-
tial regularity among the input and output weights is com-
pressed into fewer coefficients, hence greatly reducing the
search space dimensionality. Additional compression is ob-
tained by searching for spatially correlated networks, which
in the wavelet domain can be represented with even fewer
coefficients. Second, the WBE makes use of a local map-
ping between the genes and network weights, which relates
changes in the gene space more directly to the weight space.
In our experiments we find this to be beneficial for evolu-
tionary search.

The WBE scheme is evaluated in two reinforcement learn-
ing benchmarks: In [subsection 3.1] the superior performance
of the WBE over the DCT-based encoding can be observed
on the octopus arm control task; in the WBE
is evaluated on the stochastic Arcade Learning Environment
(ALE) where it is able to learn from raw visual input and
demonstrates that a reduction in search space dimension is
necessary for such complex problems.

2. WAVELET BASED ENCODING

In this section we describe a novel wavelet-based encoding
scheme for neuroevolution. A detailed discussion on wavelet
theory and the accompanied multi-resolution analysis is be-
yond the scope of this paper. The reader is referred to one
of [3,25] for an excellent overview of these topics.

2.1 Wavelets and Filter Banks

Wavelets are mathematical functions for unravelling a sig-
nal at different frequency levels in a hierarchical fashion.
Wavelets are defined recursively as dilations and transla-
tions of a single mother wavelet (t), which in the discrete
casd] take the form:

U (t) =227 — k), mk€Z (1)

The integer translates of the wavelet function v (t) at a par-
ticular scale m span a function space W, = span{im k|k €
Z}. All W,,, combined constitute a basis (localized both in
time and frequency) in which any function f can be defined
in terms of ¢ and its coefficients v in the space as:

= Z'Ym,ku)m,k 2)

m,k

A well-known example of an orthonormal basis of wavelets

is the Haar-basis [10], as displayed in and consti-
tuted by the wavelet function:

1 0<t<1/2
Pt)={ -1 1/2<t<1
0 otherwise.

!The wavelet function is discretized at the intersections of
the dyadic grid.
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Figure 1: The Haar wavelet displayed at two dif-
ferent scales. We omit the scaling factor (v/2) for
simplicity.

The wavelet transform of a continuous signal f(t) can be
interpreted as a change of basis using a wavelet-function
(t). Tt is defined as the L*-inner product between f(t)
and the wavelet function ¥, x(t), which in the discrete case
takes the form:

DWT(m, k) = (f(t), thm s (1)) = / T OBt (3)

Often no explicit expression for i, 1 (t) is available, which
is resolved by considering orthogonal wavelets. For these
wavelets it holds that v,k = DWT(m, k), which can be
computed without an explicit expression for (¢). This
approach is implemented by a pair of discrete time filters
Hy, Hy from orthogonal filter banks that are applied by con-
volution with an input sequence [25]. The filter pair is de-
fined as a finite set of filter coefficients and uniquely deter-
mine the wavelet basis function ¥(t).

outlines the schematics of a classic wavelet filter
bank. A single pass of a signal s through the analysis filter
bank computes the DWT and yields a single level wavelet
decomposition. The analysis filter bank decomposes s into
an ordered set of approximation coefficients a and detail
coefficients b encoding the low- and high-frequency content
of the input signal respectively. Since both Hy, H1 operate
at full rate, down-sampling of a factor 2 ensures that the
approximation and detail signal remain critically sampled.

The DWT halves the time resolution and doubles the fre-
quency resolution since only half of each filter output char-
acterizes s; and a, b each carry half of the frequency band of
the input signal respectively. A multi-level dyadic wavelet
decomposition is obtained by repeatedly decomposing the
low-frequency approximation coefficients. In doing so one
essentially trades time-resolution for frequency-resolution at
the lower frequencies.

The DWT as implemented by an orthogonal filter bank is
lossless and the original signal can be re-obtained by filtering
the approximation and detail coefficients with the synthesis
filter bank (right-side in[Figure 2 that computes the Inverse
DWT. In the orthogonal case the synthesis filters Fy and I}
consist of the time-reversed impulse response of the analysis
filters Hp and H; respectively.

The mother wavelet 1(¢) can be constructed to carry spe-
cific properties that may be beneficial to a particular ap-
plication. Apart from orthogonality a desirable property
is the number of vanishing moments the wavelet function
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Figure 2: A classic wavelet filter bank decomposing an input signal by convolving it with the filter-pair Ho, H1,
followed by a down-sampling operation of 2. The resulting approximation and detail signal encode the low-
frequency and high-frequency content of the input signal respectively. The process is reversed by up-sampling
the approximation and detail coefficients and convolving them with the synthesis filter-pair Fy, Fi.

carries. Vanishing moments correspond to smoothness of
the wavelet function, and to polynomial preservation of the
wavelet transform. Each of these properties carry over to
the filter pair, such that when (t) carries p + 1 vanishing
moments any polynomial structure up to order p from the
input signal is preserved in the approximation coefficients.
The detail coefficients will not contain this structure.
Depending on the filter order n and the number of van-
ishing moments a wavelet function may have several degrees
of freedom left. More specifically, a wavelet filter of order
n has 2n degrees of freedom. Orthogonality fixes n degrees
and each vanishing moment fixes an additional degree. Any
remaining freedom can be used to optimize the wavelet func-
tion with respect to a particular task [9]. In our approach
we optimize the wavelet function by means of evolution us-
ing a lattice structure for the design of orthogonal wavelet
functions of order n with up to two vanishing moments [14].

2.2 Neural Network Encoding

The wavelet-based encoding scheme is inspired by wavelet-
based image compression methods. Such methods first de-
compose an image using the wavelet transform, after which
the wavelet coefficients are quantized and encoded to obtain
a compressed representation [4]. In the quantizing and en-
coding step, compression is obtained by using fewer bits to
encode the wavelet coefficients, yielding a lossy reconstruc-
tion of the original image when reversing this approach. The
WBE similarly operates on the wavelet coefficients, however
it avoids the quantization and encoding steps, and gains
compression by exploiting the low energy of the detail coef-
ficients using zeros instead.

In the WBE each network weight tensor is encoded sepa-
rately as a set of positional low-frequency wavelet coefficients
(i.e. the approximation coefficients). By reconstructing the
network weights from just this low-frequency content a lossy
reconstruction of the original weight tensor is obtained. The
number of approximation coefficients to be evolved depends
on the number of inverse wavelet transformations [ and the
dimensionality d of the weight tensor in the weight space.
Hence an arbitrary weight tensor has a fixed compression ra-
tio of 2!% : 1. A level [ inverse wavelet transform of a tensor
with dimensionality d is obtained by applying the synthesis
filter bank from along each dimension [ times.

As an example, consider a fully connected recurrent neu-
ral network layer with h nodes receiving a two-dimensional
input of size (m X n). This layer has three weight-tensors
W (input weight matrix), R (recurrent weight matrix), B
(bias vector) of sizes (h x mn), (h x h), (h X 1) respectively.

The extend to which the regularity of each weight tensor
can be compressed depends on the number of dimensions
along which the weights are potentially correlated. In the
simplest case the weights are correlated within the rows and
columns, which express spatial regularity among the node in-
puts and across the different nodes in the layer respectively.
Additional weight correlation may be present, either in the
input (e.g. the input signal is a two-dimensional image) or
in the layer itself (the neurons are further spatially orga-
nized), which can then be compressed by first re-organizing
the weights in a tensor of higher dimension that accounts
for all dimensions along which regularity occurs.

In the example the weights in W are organized in a three-
dimensional tensor of size (h X m x n) and hence the reg-
ularity across the two input dimensions is also compressed.
The other weight tensors exhibit no additional regularity
and hence keep their original shape. Depending on [ there is

a total of (hglm] —+ [Z—f] + [Q—}H approximation coefficients to
be evolved. The steps involved in transforming the evolved
approximation coefficients to network weights for this par-
ticular example are shown in The low-frequency
wavelet coefficients are mapped from the genome to the
wavelet-space by organizing them in a tensor of suitable
shape (along each dimension as [a;, by, . . ., b1]) forming a hy-
percube in the top left corner. The rest of the tensor is filled
with zeros. Next the inverse wavelet transform is applied [
times in order to transform the tensor to the weight space.
Each tensor is now filled with weights, which after mapping
(such as collapsing axes in the case of W)E| yields a lossy
reconstruction of the weight matrices W, R and B.

The choice of wavelet basis function is important and there
is often little a priori knowledge of what constitutes a good
basis function. Here, the wavelet-basis function (i.e. the
parameters of the lattice structure) is evolved alongside the
wavelet coefficients, which is referred to as dynamic basis

2The weight tensor is flattened along the extra input dimen-
sion to yield its original shape.
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Figure 3: Schematics of the mapping from the
evolved approximation coefficients in the genome to
the network weights of a fully connected recurrent
layer. The approximation coefficients in the wavelet
space are depicted as light grey, all other entries

(i.e. the detail coefficients) are zeros. A single level
inverse reconstruction is shown.

function evolution. Two alternatives are also considered,
a fized basis function chosen by randomly selecting values
for the parameters of the lattice structure, and an optimal
basis function that was previously evolved on the same task.
When referring to the WBE by default the dynamic basis
function variant is implied.

Due to the fixed compression ratio of 2/ : 1 the size
of the genome is weakly coupled to the network complex-
ity. This contrasts the DCT-based encoding, in which both
are completely decoupled. As a trade-off the WBE gains
spatio-temporal locality, which can be observed by compar-
ing the low-frequency DCT- and wavelet representation of a
weight matrix as displayed in One can clearly see
that the wavelet coefficients provide positional information,
whereas the DCT coefficients contain no such a correspon-
dence. Moreover, the lossy wavelet reconstruction of the
original weight matrix demonstrates how the low energy of
the detail coefficients can be utilized to yield compression
(in this case at a ratio of 4 : 1) while preserving the most
important aspects of the original weight matrix.

The filter order n and the level of decomposition [ play a
role in balancing locality and regularity. A wavelet filter of
order n affects 2n coefficients, hence by increasing the filter
order the wavelet transform becomes less local. This effect is
further amplified by [. In the experiments a filter of order 2
and a single vanishing moment were chosen, leaving a single
degree of freedom left for the basis function to be optimized.
This choice yields quick convergence and maximal spatio-
temporal locality.

3. EXPERIMENTS AND RESULTS

Two evolutionary algorithms were used to search the space
of wavelet coefficients: Cooperative Synapse Neuroevolu-
tion (CoSyNE; [§]) and the Separable Natural Evolution-
ary Strategies (SNES; |27, |21]). CoSyNE is a cooperative
coevolutionary method, which searches at the level of indi-
vidual network weights. It keeps an explicit sub-population
for each weight and alters the population at each gener-
ation using three evolutionary operators; Besides mutation
and recombination, CoSyNE employs probabilistic permuta-
tion to co-evolve the weights within a subpopulation so that
each weight forms part of a potentially different network in
the next generation. CoSyNE has shown to be efficient in
searching for weight values indirectly [17], here it is used in
a similar fashion by searching for wavelet coefficients.

(a) DCT Coefficients

« A

(b) Weights

(c) Wavelet Coeflicients (d) Lossy Reconstruction

Figure 4: [(a)] A random, band-limited set of DCT
coefficients is transformed, using padding and the
inverse DCT transform, into a weight matrix @
After performing a single level wavelet decomposi-
tion on|(b)|the low-frequency wavelet coefficients are
obtained |(c)l A lossy wavelet reconstruction from
these coefficients is depicted in @.

SNES maintains a (Gaussian, in this case) distribution for
each gene from which it samples a population at each gener-
ation. Based on the performance of the population the mean
and variance of the gene distributions are updated in the di-
rection of the natural gradient. SNES is particularly suited
for high-dimensional problems as it scales linearly with the
problem dimension.

CoSyNE and SNES are similar in that they operate at the
level of individual parameters, and thus allow the parame-
ters of the wavelet-basis function to be evolved alongside the
wavelet coeflicients.

3.1 Octopus-arm Control Task

In this task an octopus arm having ¢ compartments is
floating in a 2D fluid environment [29]. Each compart-
ment has constant volume and contains 3 controllable mus-
cles. The state of a compartment is described by the z, y-
coordinates of two of its corners plus their velocities. To-
gether with the arm base rotation, the arm has 8c + 2 state
variables and 3¢ + 2 control variables. The goal of the task
is to control the arm in order reach a goal position with the
tip of the arm, starting from three different initial positions.
The arm is controlled by contracting the appropriate mus-
cles at each step of simulated time. Two additional starting
positions were used to measure generalization performance.

For this particular task ¢ was chosen as 10, resulting in 32
control variables, and 82 observable state variables. The
wavelet-based encoding is evaluated on the state control
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Figure 5: Fitness obtained by different encodings on the Octopus-arm Control Task. On the left the averaged
champion training fitness at each generation. In the middle the champion training fitness distribution at the
final generation. On the right the champion testing fitness distribution at the final generation.

task, in which the network receives the state variables as in-
put. The controller is a fully connected recurrent NN, with
a hidden state corresponding to each of the 32 control pa-
rameters, and a sigmoid activation function. The resulting
network has 3 680 connection weights and hence dimension-
ality reduction of the weight space is not necessary. This
task was primarily used to evaluate the various WBE prop-
erties, in particular the effect of spatio-temporal locality and
performance compared to the DCT-based encoding.

3.1.1 Results

Figure [5| summarizes the performance of the various en-
codings evaluated on this task. Each encoding was evolved
using SNES for 150 generations with a fixed population size
of 40. The results, shown in Figure are averaged over
20 experimental runs. Direct encoding (DIR) is compared
to the WBE with a fixed (fiz), dynamic (dyn) and optimal
(opt) basis function for different levels, and to the DCT-
based encoding using different numbers of coefficients. The
same line style is used for encodings with the same amount
of network parameters.

It can be seen that the direct encoding performs among
the best performing encodings on this task, both in terms
of training and testing fitness. The low complexity of this
task allows good solutions to be found without reduction of
the search space. When comparing the compressed encod-
ings, i.e. for a single level compression (of approximately a
factor 4) the wavelet-based encoding (WBE dyn I) to the
DCT-based encoding (DCT 928) with the same amount of
network parameters, the WBE performs significantly better,
both in terms of training and testing fitness. On the other
hand we observe slower convergence of the WBE, which is
expected as the dynamic basis function makes this a dual
optimization problem — optimal weight values and the ba-
sis function parameters (hence the transform) have to be
searched for at the same time.

3.1.2  Evolving the wavelet basis function

An alternative to a dynamic basis function would be to
use a random basis function at each experimental run, which

is fixed throughout each generation. As seen in [Figure 5| the
performance of this approach (WBE fix 1) is significantly
worse in terms of fitness. Nevertheless, the small range of
the upper two quartiles in the middle plot suggests that
whenever a “good” basis function is found, the fixed encod-
ing is able to reach the same performance as when using a
dynamic basis function. In fact, the WBE with a previously
evolved basis function (WBE opt 1) has supreme perfor-
mance across all the experimental runs. Hence we conclude,
since a priori knowledge of what constitutes a good basis
function is not available, that evolving the basis function is
necessary to reach an excellent solution.

3.1.3  Further compression

Additional compression can be obtained by using a level-
2 inverse wavelet transform (total compression of approxi-
mately a factor 16). WBE dyn 2 performs significantly bet-
ter in terms of testing fitness than the DCT-based encoding
with the same amount of network parameters (DCT 232).
However, as opposed to the single level transform it is un-
able to perform significantly better (but also not worse) in
terms of training fitness.

The champion training fitness distribution at the last gen-
eration in the middle plot of provides further in-
sight. Here we observe that the range of the fitness in the
third quartile is much larger than in the first and second
quartile, due to the few cases where dual optimization of
the basis function and the wavelet coefficients failed.

Similar optimization failure can be observed for WBE dyn
1 (in the form of two outliers) yet at a much smaller scale.
By using a two-level transform the choice of basis function
(represented by the filter coefficients) affects exponentially
more weights and amplifies the lack of performance when
no good solution to both optimization problems is found.
Observing that the upper two quartiles of the training fitness
distribution are well above those of DCT 232 with a similar
range further confirms this.

A separate experiment was done in order to ensure that,
for an increased level of compression, the WBE is able to



outperform the DCT-based encoding when the additional
complexity of optimizing the inverse wavelet transform is
not present. In this experiment, the dynamic wavelet ba-
sis function was substituted with a previously evolved op-
timal basis function (WBE opt 2). These results are con-
sistent with (WBE opt 1) where superior performance both
in terms of training and testing fitness was obtained. The
WBE greatly outperformed the DCT-based encoding in this
task.

3.1.4 Spatio-Temporal Locality

In the light of spatio-temporal locality several interesting
observations can be made. Foremost, there is a clear order-
ing in terms of performance from a completely local encoding
(direct encoding) to an encoding localized both in time and
frequency (WBE) to an encoding completely localized in fre-
quency (DCT-based encoding). A similar ordering in terms
of locality can be also be observed by analyzing the search
efficiency in terms of convergence. As previously mentioned,
a dynamic basis function slows down convergence due to the
additional optimization problem being created. However, it
can also be observed that when this is not the case (e.g.
WBE opt 1, WBE opt 2) the wavelet-based encoding con-
vergences to a superior solution much faster. This clear
ordering in terms of performance and convergence serves as
empirical evidence that indeed spatio-temporal locality al-
lows for more efficient search via evolutionary computation.
When substituting SNES with CoSyNE the same ranking
across the encoding schemes in terms of locality, convergence
and performance was preserved.

On this particular task the degree to which an encoding is
local allows for a particular type of solution, which is often
harder to find for non-local encodings. A typical example
is shown in which shows snapshots of the octo-
pus arm controlled by a network evolved for three encodings
(top) and the corresponding recurrent weight matrix of the
controller (bottom). In evaluating the controllers evolved
using a non-local encoding (DCT-based) we observed that
solutions, in which the upper and lower muscles are con-
tracted at the same time (yielding the S-shape structure),
are preferred. This is likely caused by the extensive regular-
ity in the solution weight matrices. The direct and wavelet-
based encoding both favored an alternative solution, which
contracts the top muscles independently from the bottom
muscles and is favorable for this particular task. The clear
differences in regularity in the weight matrices found by each
solution aid in understanding this very different behavior.

3.2 Arcade Learning Environment

In this task the Arcade Learning Environment (ALE ver-
sion 0.5.0), which offers an API for agents to play a wide
selection of Atari 2600 games |1], was used. A subset of
the available games was chosen at random. The goal of an
agent is to achieve a score as high as possible. An agent is
represented by a NN with a fully connected recurrent layer
(100 ReLU units) and a fully connected output layer (36
sigmoid units). The network computes an action every fifth
frame from a visual pixel-representation of the game state.
The 210 x 160 pixel input from ALE is converted to gray
scale and down-sampled to size 105 x 80. This minimal pre-
processing technique is similar to the one used in [18].

The agent is able to perform 18 actions: 8 directions of
movement (each can be combined with the fire action), the

Figure 6: Snapshots of the octopus arm in action as
it reaches for the goal (red dot) from the initial posi-
tion with the arm pointing up (top), and the recur-
rent weight matrix of the corresponding controller
(bottom). From left to right: direct encoding |(a)]
WBE @ and the DCT-based encoding

do-nothing action and the fire action. The actions are rep-
resented by 9 buttons (each defined as 2 x 2 sigmoid output
units) organized in a 3 X 3 grid. A button is “pressed” if its
minimum average activation is above a pre-specified thresh-
old (set to 0.5). If multiple buttons are pressed at the same
time then the two buttons with the highest activations are
registered. If one of the actions is the fire action then a com-
bination action is forwarded to the game, else the button
with the highest activation is used. The do-nothing action
is activated when no other button is active.

The main purpose of this experiment is to show that a
direct encoding scheme is no longer effective when the net-
work becomes too large, and the use of an indirect encoding
scheme is necessary. The network for this task has 853736
weights and is well suited to demonstrate this. In this ex-
periment we are not interested in achieving a global optimal
solution to a game, hence each controller is evolved only for
a small number of generations in search for a local optima.

3.2.1 Results

summarizes the results of the DCT-based en-
coding, the WBE, and the direct encoding (DIR) in this
task. The WBE, and DCT-based encoding compress the
total amount of coefficients by approximately a factor of 8.
Five agents were evolved (100 generations, with a population
size of 40) by CoSyNE for each encoding. Each agent was
evaluated by playing 100 games, of which the scores are av-
eraged, normalized and displayed in Stochasticity
of ALEEI yields a large variance of the scores (not displayed)
and hence a significant comparison for each individual game
can not be made. Nevertheless a consistent pattern, in which
the indirect encoding schemes outperform the direct encod-
ing, emerges across all the games that are evaluated.

In this paper, to the best of our knowledge, we present the

3With probability p = 0.25, the previously executed action
is executed again during the next frame, ignoring the agent’s
actual choice.
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Figure 7: The performance of the DCT-based encod-
ing and the WBE in ALE. Averages were obtained
from 5 agents for each encoding, which each played
the game a 100 times. Scores are displayed in terms
of the performance of the direct encoding.

Table 1: Training fitness scores reported of the
champion at the final generation for the wavelet
based encoding (WBE), the direct encoding (DIR),
and pixel-based HyperNEAT scores from [11].
Scores of the random agent are averaged over 30
experimental runs, and WBE and DIR over 5 ex-
perimental runs.

Random DIR WBE HyperNEAT

Atlantis 23940 63427 82887 61260
Gravitar 205 1060 1127 370
Phoenix 741 3682 4643 1762
Seaquest 90 705 763 716
Space Inv. 113 734 872 1251
Q-Bert 185 878 1143 695

first scores of a neuroevolutionary agent on stochastic ALE
using raw pixel input. A fair comparison to related work
can therefore not be made, which is for the purpose of this
experiment unnecessary. The closest possible comparison
that can be made is to a pixel-based HyperNEAT agent on
a deterministic version of ALE [11].

reports training fitness scores and compares them
to the training scores of the HyperNEAT agent as was re-
ported in . The WBE scores consistently outperform
the scores of a random agent and an agent obtained by us-
ing a direct encoding. In terms of gameplay we find that
when using the WBE often a local optima is found, yielding
lots of points while being relatively simple in terms of strat-
egy. Although the HyperNEAT agent is different in many
ways (e.g. visual input, network architecture, randomness)
it is interesting to see that in most cases WBE performs
markedly better. This was surprising given the relatively
simple gameplay that was obtained when evolving a con-
troller for few generations using our encoding.

4. DISCUSSION

The behavior of genetic algorithms is difficult to under-
stand, yet schema theory offers some insight. In particular,
we are able to reason about the disruptive effects of mu-
tation and crossover with respect to solutions as being in-
stances of schemata . It can be shown that schemata
with a long defining length have a higher probability to be
disrupted by crossover, where as schemata with high order
have a higher probability of being disrupted by mutation.
The building block hypothesis @ suggests that genetic al-
gorithms perform adaptation by identifying and recombining
building blocks of relatively high fitness to build entire solu-
tions. These building blocks take the form of schemata with
low order and a short defining length as these are processed
with minimum disruption.

The above formulation applies in the case of a local map-
ping, i.e. when using a direct encoding. However, when an
indirect encoding is used and a non-local mapping is em-
ployed, we argue that the genetic algorithm is no longer
able to make use of these building blocks. In the non-
local case a single-point mutation in gene space affects the
weight space entirely, and therefore its disruptive effect oc-
curs everywhere, independently of the order of the schemata.
Similarly the disruptive effect in weight space by cross-over
in gene space is independent of the defining length of the
schemata, as cross-over in a non-local gene space preserves
none of the original values in the weight space. It follows
that the previous advantage that building blocks offer in the
gene space is gone, and the genetic algorithm is no longer
able to use such blocks to efficiently build its solutions.

In the case of SNES it is more difficult to provide an intu-
itive explanation as to why a non-local encoding negatively
affects the search efficiency. We speculate that discontinu-
ity of the natural gradient updates between gene- and weight
space, and the mismatch of the population distribution be-
tween gene- and weight space when sampling in gene space
play a central role in this.

S. CONCLUSION AND FUTURE WORK

Indirect encoding schemes are advantageous in neuroevo-
lution when the network complexity becomes too large. In
this paper a wavelet-based compressed encoding scheme was
introduced that satisfies spatio-temporal locality, and hence
relates the gene space more directly to the weight space. It
was argued that such a more local mapping increases the
efficiency of evolutionary search when employing an indirect
encoding and hence yields excellent solutions more quickly.
Empirical results and an intuitive argument using the build-
ing block hypothesis with respect to traditional evolutionary
operations suggest that this indeed the case.

In our experiments we found that the wavelet-based en-
coding using a previously evolved basis function yields su-
perior performance. However, since such a basis function is
not available a priori, a dynamic basis function was evolved
alongside the wavelet coefficients. It was shown that the
performance when using such a dynamic basis function is
superior to an approach in which a random basis function
is chosen. In comparing the dynamic WBE scheme to a
DCT-based encoding scheme we found significant increased
performance in favor of our method. When increasing the
compression rate the choice of basis function becomes in-
creasingly more important. It was observed that for a level



2 decomposition, in few cases, a dual solution was not found
and poor performance was obtained.

A filter order of n = 2 was chosen in our experiments,
which yielded maximum locality and reduced the complexity
of the secondary optimization problem. We have empirically
verified (not shown in this paper) that increasing the filter
order further yields results that are in line with our previous
analysis, yet were not used in practice due to the increasingly
slow convergence as n increases and optimization of the basis
function becomes increasingly more difficult.

Ultimately one would want to increase the filter order
without slowing down the convergence and increase the com-
pression rate without reducing stability. Hence, we argue
that improvements to this particular aspect of wavelet-based
encoding are necessary to provide these guarantees. Such
improvements are likely to be obtained by considering a dif-
ferent (more restricted) parametrization of the wavelet basis
function or an alternative optimization procedure of the cur-
rent parametrization.
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